2D-3D face matching using CCA
نویسندگان
چکیده
In recent years, 3D face recognition has obtained much attention. Using 2D face image as probe and 3D face data as gallery is an alternative method to deal with computation complexity, expensive equipment and fussy pretreatment in 3D face recognition systems. In this paper we propose a learning based 2D-3D face matching method using the CCA to learn the mapping between 2D face image and 3D face data. This method makes it possible to match the on-site 2D face image with enrolled 3D face data. Our 2D-3D face matching method decreased the computation complexity drastically compared to the conventional 3D-3D face matching while keeping relative high recognition rate. Furthermore, to simplify the mapping between 2D face image and 3D face data, a patch based strategy is proposed to boost the accuracy of matching. And the kernel method is also evaluated to reveal the non-linear relationship. The experiment results show that CCA based method has good performance and patch based method has significant improvement compared to the holistic method.
منابع مشابه
2D and 3D Multimodal Hybrid Face Recognition
We present a 2D and 3D multimodal hybrid face recognition algorithm and demonstrate its performance on the FRGC v1.0 data. We use hybrid (feature-based and holistic) matching for the 3D faces and a holistic matching approach on the 2D faces. Feature-based matching is performed by offline segmenting each 3D face in the gallery into three regions, namely the eyes-forehead, the nose and the cheeks...
متن کاملWhen 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition
Most of the face recognition works focus on specific modules or demonstrate a research idea. This paper presents a pose-invariant 3D-aided 2D face recognition system (UR2D) that is robust to pose variations as large as 90◦ by leveraging deep learning technology. The architecture and the interface of UR2D are described, and each module is introduced in detail. Extensive experiments are conducted...
متن کاملFace tracking using canonical correlation analysis
This paper presents an approach that incorporates canonical correlation analysis for monocular 3D face tracking as a rigid object. It also provides the comparison between the linear and the non linear version (kernel) of the CCA. The 3D pose of the face is estimated from observed raw brightness shape-free 2D image patches. A parameterized geometric face model is adopted to crop out and to norma...
متن کاملLearning to Fuse 3D+2D Based Face Recognition at Both Feature and Decision Levels
2D intensity images and 3D shape models are both useful for face recognition, but in different ways. While algorithms have long been developed using 2D or 3D data, recently has seen work on combining both into multi-modal face biometrics to achieve higher performance. However, the fusion of the two modalities has mostly been at the decision level, based on scores obtained from independent 2D an...
متن کامل2D&3D-ComFusFace: 2D and 3D Face Recognition by Scalable Fusion of Common Features
In traditional 2D and 3D face recognition systems, different features are extracted from 2D and 3D face images, and then are fused to improve the recognition performance. The shortage of these methods is that they neglect the intrinsic complementary features between 2D and 3D data. In this paper, we investigate the possibility of extracting and scalable fusing common features from 2D intensity ...
متن کامل